MongoDB
MongoDB MongoDB 是一个基于 分布式文件存储 的开源 NoSQL 数据库系统,由 C++ 编写的。MongoDB 提供了 面向文档 的存储方式,操作起来比较简单和容易,支持“无模式”的数据建模,可以存储比较复杂的数据类型,是一款非常流行的 文档类型数据库 。 在高负载的情况下,MongoDB 天然支持水平扩展和高可用,可以很方便地添加更多的节点/实例,以保证服务性能和可用性。在许多场景下,MongoDB 可以用于代替传统的关系型数据库或键/值存储方式,皆在为 Web 应用提供可扩展的高可用高性能数据存储解决方案。 1 MongoDB基础 1.1 MongoDB存储结构 MongoDB 的存储结构区别于传统的关系型数据库,主要由如下三个单元组成: 文档(Document):MongoDB 中最基本的单元,由 BSON 键值对(key-value)组成,类似于关系型数据库中的行(Row)。 集合(Collection):一个集合可以包含多个文档,类似于关系型数据库中的表(Table)。 数据库(Database):一个数据库中可以包含多个集合,可以在 MongoDB 中创建多个数据库,类似于关系型数据库中的数据库(Database)。 也就是说,MongoDB 将数据记录存储为文档 (更具体来说是BSON 文档open in new window),这些文档在集合中聚集在一起,数据库中存储一个或多个文档集合。 与SQL的术语对比 SQL MongoDB Table(表) Collection(集合) Row(行) Document(文档) Col(列) Field(字段) Primary Key(主键) Object ID (对象ID) Index(索引) Index(索引) Embedded Table(嵌套表) Embedded Document(嵌入式文档) Array(数组) Array(数组) 1.2 MongoDB特点 数据记录被存储为文档:MongoDB 中的记录就是一个 BSON 文档,它是由键值对组成的数据结构,类似于 JSON 对象,是 MongoDB 中的基本数据单元。 模式自由:集合的概念类似 MySQL 里的表,但它不需要定义任何模式,能够用更少的数据对象表现复杂的领域模型对象。 支持多种查询方式:MongoDB 查询 API 支持读写操作 (CRUD)以及数据聚合、文本搜索和地理空间查询。 支持 ACID 事务:NoSQL 数据库通常不支持事务,为了可扩展和高性能进行了权衡。不过,也有例外,MongoDB 就支持事务。与关系型数据库一样,MongoDB 事务同样具有 ACID 特性。MongoDB 单文档原生支持原子性,也具备事务的特性。MongoDB 4.0 加入了对多文档事务的支持,但只支持复制集部署模式下的事务,也就是说事务的作用域限制为一个副本集内。MongoDB 4.2 引入了分布式事务,增加了对分片集群上多文档事务的支持,并合并了对副本集上多文档事务的现有支持。 高效的二进制存储:存储在集合中的文档,是以键值对的形式存在的。键用于唯一标识一个文档,一般是 ObjectId 类型,值是以 BSON 形式存在的。BSON = Binary JSON, 是在 JSON 基础上加了一些类型及元数据描述的格式。 自带数据压缩功能:存储同样的数据所需的资源更少。 支持 mapreduce:通过分治的方式完成复杂的聚合任务。不过,从 MongoDB 5.0 开始,map-reduce 已经不被官方推荐使用了,替代方案是 聚合管道open in new window。聚合管道提供比 map-reduce 更好的性能和可用性。 支持多种类型的索引:MongoDB 支持多种类型的索引,包括单字段索引、复合索引、多键索引、哈希索引、文本索引、 地理位置索引等,每种类型的索引有不同的使用场合。 支持 failover:提供自动故障恢复的功能,主节点发生故障时,自动从从节点中选举出一个新的主节点,确保集群的正常使用,这对于客户端来说是无感知的。 支持分片集群:MongoDB 支持集群自动切分数据,让集群存储更多的数据,具备更强的性能。在数据插入和更新时,能够自动路由和存储。 支持存储大文件:MongoDB 的单文档存储空间要求不超过 16MB。对于超过 16MB 的大文件,MongoDB 提供了 GridFS 来进行存储,通过 GridFS,可以将大型数据进行分块处理,然后将这些切分后的小文档保存在数据库中。 1.3 MongoDB应用场景 MongoDB 的优势在于其数据模型和存储引擎的灵活性、架构的可扩展性以及对强大的索引支持。 ...